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A MODIFIED PRONY METHOD APPROACH TO ECHO-REDUCTION '
MEASUREMENTS OF TIME-LIMITED TRANSIENT SIGNALS g

INTRODUCTION

The current procedure for making echo~reduction measurements of
acoustic panels at the Underwater Sound Reference Detachment of the Naval
Research Laboratory employs steady-state signal processing of measurements
made in the anechoic tank. The anechoic tank allows measurements to be
performed at various temperatures and hydrostatic pressures. However, it
restricts panel width to 76.2 cm due to the size of the access port.

34 cm
PROBE PROJECTOR
PR aot i —
170 cm
/-{\ANECHOIC PANEL
76 cm

e

Fig. 1 - Panel measurement geometry

Figure 1 illustrates the geometry of the measurements. The panel is
insonified by a projector 170 cm in front of the panel, and the incident
and reflected signals are monitored by a probe 34 cm in front of the panel.
For a step sinusoid signal from the projector, the output of the probe,
illustrated in Fig. 2, consists of 426-us segment of incident signal
followed by a 14l-us segment of both incident and reflected signals
followed by the arrival of the diffracted signal from the panel edges.

In order to eliminate the undesired diffracted signal, the measurements
are time limited to approximately 140-us for the reflected signal. This

time limit and the constraint that the signal reach its steady-state re- ;
sponse currently restrict measurements to frequencies above 15 kHz. To |
obtain measurements below 15 kHz it must be possible to extrapolate the !
steady-state response from the transient portion of the signal.

Manuscript submitted March 30, 1980.
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Fig. 2 - Time segment output of probe for step sinusocid signal

The Prony ([1] method first published in 1795 allows such an extra-
polation and has been investigated as a means of allowing low-frequency
panel measurements. In this report a modified Prony method is presented,
which allows measurements to be performed down to 2 kHz, along with the
results of measurements on various panels to illustrate the ability of
the modified approach.

THEORY

Any signal that can be represented by a function that is the solution
of a set of constant-coefficient linear differential equations has an ex-
pansion given by [2]

N

§l£) = Aj exp(/sft) , (1)

=1
where N is the order of expansion and A; and 4 are respectively the
amplitudes and poles to be determined. ~Since §(f) is real, both A and )
44 must be real or appear in complex conjugate pairs. The real part of
the pole 4; is the time constant associated with the transient response,
and the imaginary part is the angular frequency of the jth component.
The phase information is contained in the amplitudes Aj.

There are two immediate difficulties in obtaining the expansion in
Eq. (l1). First there is the problem of the nonlinearity of the expan-
sion in 4; and second, there is the indeterminacy of the order of ex-
pansion N{ The first problem was solved by Prony and his method will
be described below. The indeterminacy of the order of expansion will
be discussed after the basic equations have been derived.

Prony found that the desired expansion could be obtained by consid-

ering a uniformly sampled version of §{Z). Equation (1) then becomes
N A
ka) = A. expls :ka) , (2) ;
flkal = 3 A expls kol 5‘

where J is the data sampling time interval and k is an indexing integer ‘ \
running from 0 to M such that MA is equal to the observation time. )




s = . .
E A

Equation (4) does not represent a linear set of equations in Zj. However,
Prony noted that solutions to Z; could be found by first defining an Nth
order polynomial in Z whose roots are zg. That is

o
P(z) = a.z¢= I (z-z,) (5)
(z) go i il

where a,, = 1. The o coefficients have one more degree of freedom than

the Zj; hence the arbitrary setting of oy equal to unity, Using Egs. (4)
and (5) to evaluate the following expression:

N
) a, §1lé + £)al. (6)
£=0

For £ = 0 to M-N yields

N N N )
1 a, §L(L + L)a) = 2 (21 AJZJ'U)

£=0

-j 1 75 J
N-1
or oo fUlE + £)81 = -§UIN + £]a] 7
A=0
since o, = 1. Equation (7) yields M-N+1 linear equations in the N unknown

polynomial coefficients. For M=ZN-1 the equations can be solved to obtain
the a; which completely define the polynomial in Eg. (5). The roots of the
polynomial can be found to provide the required ZJ. These Zj are then sub-
stituted into Eq. (4) to determine the amplitudes Aj. The eXpansion is
then completed by transforming the Zg back into the complex 4 plane using

-1
.= A z., 8
§ 1in § (8)

Prony's method isolates the nonlinearity of the expansion to Eq. (5).
However, the method introduces a third difficulty through Eq. (8).




Negative real Z; cannot be transformed back into the complex 4 plane.
Although these represent nonphysical terms, noise contaminated data will
occasionally produce negative real Z4. When this occurs, one must be
satisfied with the expansion in the form of Eq. (4).

In addition to negative real zZ;, nonphysical roots occur as a conse-
quence of the indeterminacy of the order of expansion. If fewer poles are
specified in the expansion than actually exist in the data, then the poles
returned by the algorithm deviate from the true poles and, in most cases,
the true poles will not be returned at all. If more poles are specified
than actually exist, the algorithm will return extraneous poles in addi-
tion to a set that deviates from the true poles. The presence of the
extraneous poles adversely affects the calculated amplitudes of the true
poles. Attempts to systematically determine the order of expansion by
checking for linear dependent columns in the matrix generated by the
Prony difference equations or by analyzing the eigenvalues of the matrix
have failed in the presence of noise ([3].

In the modified method to be developed in the remainder of this section,
the problems of negative real Zj and the indeterminacy of the order of ex-
pansion will be circumvented. This will be accomplished through the intro-
duction of apriori poles and will be discussed after the equations are
developed. However, first a modified least square extension of the Prony
method will be developed.

The solution of Eq. (7) requires at least 2N sampled data points. For
the case where M = ZN-1, the solution will pass directly through the sampled
data points since the problem is exactly specified. However, in general,
the number of available data points exceeds ZN and a type of least square
solution is used. This is most conveniently done by performing a pseudo-
inverse of Egs. (7) and (4). Equation (7) in matrix notation is

Ax = y, (9)
where
(4, & I Y
R B ooty

-




The pseudo-inverse is formed by premultiplying both sides of Eq. (9) by
. the transpose of A. That is, ’

sTax = ATy. (10)
The matrix ATA is a symmetric NXN matrix. Writing out Eq. (10) explicitly
yields
N-1 M
Loa; . L gUlirk)al grlerk)a)
£=0 k=0
M
,' = - k{ §LIN+R) AT §1(L+R])A] (11)
=0

for £ = 0 to N-1.




Following the same procedure the least square extension of Eq. (4) is

N M
jzl Af{kz (z, Z ) 2 2/ R ¢ (ko) (12)

for £ = 1 to N,

This least square extension of the Prony method was examined by
McDonough [4], who observed that the normal equations become increasingly
ill conditioned as the sampling rate increases. The source of the diffi-
culty lies in the data interval spanned by each difference equation. The
interval spanned is NA; and as the sampling rate 1/4 increases, the spanned
interval decreases. As smaller portions of the signal are used in each
difference equation, the noise in the signal has a greater deleterious
effect on the pole estimates. In order to eliminate this effect Beatty
[S] uses every pth sampled data point instead of adjacent samples to
satisfy the difference equations. This results in a data span of Npa
for each difference equation. Then, as the sampling rate is increased,
the value of p is increased to maximize the interval spanned. All of the
data are used since each difference equation's initial data sample is
4(kA) where k is an incrementally stepped integer. For this modification
the equations are developed below.

let

§(RA + npa) = 2 A expls ; (kA + npa)l, (13) )

where k, n,and p are all positive integers and p is the introduced data
increment. ILet

z} = pr(éij) (14)
and
t §lk,n) = §RA + npa). 1)
Then Eq. (13) becomes r
N N
flk,n) = Z A expls, kA) z jZl sz}” , (16) _ p

where BJ = AJ exp(A ;kA). since the difference equations do not depend
upon Bj (R is a constant in each difference equation), the difference
equations are

N-1
Zo 5(k.n)an = -4(k,N) (17)
n=




for kR = 0 to M-N. The least square extension of Eq. (17) is obtained by
forming the pseudo-inverse resulting in

e

| N-1  (M-N M-N
' ! « { Y oflk,n)flk, ) (= - T §lk,N)§lk,2) (18)
| nso " k=0 k<o

for £ = 0 to N-1. The solution of Eq. (18) yields the coefficients o, ,
which define P(z°). The roots of P(z") are Zj. The 2} may be transformed H
back into the complex 4 plane using '

= -1 -
éj = (pA} T 1n z7. (19)

Once the 4/ are computed they may be substituted into Eg. (3), and then
Eq. (12) can be used to obtain the amplitudes A;. As before, the pro-
cedure fails if a negative real 27 is obtained;  except in this case not
even the amplitudes can be obtained.

In the case of echo-reduction measurements the useful information is
contained in the amplitude of the steady-state driving frequency component.
Under this circumstance the Prony method can be modified by the introduc-
tion of a priori poles to circumvent the problems of negative real z7 and
the indeterminacy of the order of expansion. If the algorithm is con-
strained to find the correct a priori poles, the remaining poles used in
the expansion are used as curve-fitting poles. There is no requirement
that the curve-fitting poles have any physical significance. Then the
only requirement on the order of expansion is that there be a sufficient
number of curve-fitting poles such that the mean square deviation between
the waveform and it's expansion be below some arbitrarysmall value.

The problem of negative real Zj is eliminated by using an odd integer

for the data increment p. Then Eg. (12) may be used directly to obtain
the amplitudes since

ke ;
z; (Zj) , (20) !
and negative real Z} are handled with ' ¢
i
1/p :
2,= =1z°. . (21)
;e Iz

The modified equations are developed below. b

Let

?
i
4
.
!

) = N(z7) (22)




be the polynomial generated by the Rapriori poles where bg = 1. Since
N(z") must be a factor of Prony's polynomial, P(z") in Eq. (5) can be
written as

N-R
Plz7) = Niz*) | an‘" ,
n=o0

where BN-R = 1. Writing Eg. (23) explicitly yields

I
a.2”" = b,z* . B Z° .
o * 50 % neo "

N
&
Equating similar powers of z” yields
R
o, =£§0 by B:p (25)

where By = By-1 = - --=BN_R+1=OandB_l=B_2=' - »=f_p=0.
Substitution of Eq. (25) into Eq. (17) yields

N-1 R
gk, <) { 1 b,8._ }= -4 (k,N}, (26)
4'_20 L=0 4L
which may bé rewitten as
N-R-1 R R
3y BJL% ) bzﬂ(k,éw) = -7 b.flR,N-R+{), (27)
A=0 £=0 j=0 J
Let
R
Flk,n) = 1 b §lk,ntj). (28)
j=0 J
Then Eg. (27) becomes
N-R-1
B; Plk,4) = -F{k,N-R). (29)
L50

Forming the pseudo-inverse results in

N-R-1 (M-N M-N
’ 34{ ) F(k,i)F(k,j)}= - Y FlRN-RIF(k,J) (30)
L=0 k=o k=0

\t )




for j = 1 to N-R-1. Equation (30) is solved to obtain the coefficients B;.
These Bé are then used to generate the reduced Prony polynomial whose roots
z7 are the curve-fitting poles. The curve-fitting poles together with the
a“priori poles are transformed using Eqs. (20) and (21)., The computed Z;
are then used in Eq. (12) to find the amplitudes Aj. The amplitude of the
steady-state driving frequency pole is then used to compute the echo
reduction in a manner to be discussed later.

COMPARISON OF MODIFICATIONS

In order to test the effectiveness of the various modifications on the
type of signal to be encountered in panel measurements, the waveform in Fig.
3 was generated. The waveform simulates the reflection of a 3-kHz step
sinusoid from a 0.95-cm thick infinite steel plate. It was computer gener-
ated by successively adding, with suitable time delays, the multiple internal
reflections that are transmitted back through the face of the plate. Seven
data files were constructed by sampling the waveform at 1 MHz and adding
various levels of random noise. The first 200 us of each data file was
then analyzed by the Prony method in six different manners.

0.426

L]

0.341
0.256

T

0.170

0.085

° \
~-0.085
-0.170

AMPLITUDE

T

~0.256

-0.341+

~0.426 " 1 N 1 1 1 1 i J
0 0.Cce3 0.186 0.279 0.372 0.465

TIME (ms)

Fig., 3 - Simulated reflection of a 3-kHz step sinusocid
from a 0.95-cm thick infinite steel plate

The six expansions performed were divided into two sets of three, one
of which used three poles in the expansion while the other used fifteen poles.
Three pole expansions were used since the waveform has a known three-pole
expansion consisting of a complex conjugate pair representing the steady-
state driving frequency and a real pole associated with the transient
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Each

The choice of fifteen poles was arbitrary.

set contained one expansion with no apriori poles and a data increment of

response of the plate.
one one expansion with no apriori poles and a data increment of eleven,

and an expansion with two apriori poles and a data increment of eleven.

The a priori poles entered were the steady-state driving frequency poles
and since 200 data points were used, all expansions used least square

methods.
The amplitude of the steady-state driving frequency poles or the poles
closest to the driving frequency when no a priori information was entered
The results are

were used as a measure of the accuracy of the expansion.
plotted in Fig. 4 where the correct amplitude is 0.426 and the two expan-

sions with a data increment of one were not plotted since the expansions

failed in most cases to obtain any poles close to the driving frequency.

The results indicate that unless one has a high signal to noise ratio the

only method that obtains useful information is the use of both apriori and
In general the more a priori information supplied and

curve fitting poles.
the more curve fitting poles used the better the results.
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SELECTION OF INPUT VARIABLES

The modified Prony algorithm contains three user supplied variables:
the data increment, order of expansion, and length of time window.
Unfortunately, no strict limits on the variables can be set since they
depend on the complexity of the waveform being analyzed and the signal-
to-noise ratio. However, given the constraints under which the method
will be used in making echo~reduction measurements, several useful comments
can be made. In this section the required values of the variables for
echo~reduction measurements will be investigated.

Data Increment

In order to investigate the variables with the actual signals to be
encountered in panel measurements, a set of waveforms was obtained for
the reflection of a step sinusoid from a l.27-cm-thick, 76-cm-square
steel panel. The waveforms were obtained by placing a probe 5 cm and a
projector 170 cm in front of the steel panel. A l-ms pulse from the
projector produced a 67-us segment of direct signal, at the probe,
followed by 250 us of incident plus reflected signals before the arrival
of the diffracted signal from the panel edges. The output voltage of
the probe was sampled at 1 MHz, and 100 separate recordings were averaged
to reduce the incoherent noise level. A second set of measurements were
made without the steel panel in place to obtain a long recording of the
incident signal. The two waveforms were then directly subtracted to
yield the reflected waveform from the steel plate. Figure (5) illustrates
the waveform of the steel panel reflection at 3 kHz.

275
o .220+
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&
= 035
& 0
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L, --0s5H
S
& -i65
3 .

-.220

-.275 ! L : 1 )

0 125 250 375 500 625

TIME (us)

Fig. 5 = Waveform obtained by the reflection of a 3-kHz
step sinusoid from a 1.27-cm-thick steel plate
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The modified Prony method was used to analyze the 3-kHz waveform to
obtain the amplitude of the steady-state driving frequency poles that
were entered a priori. A 15-pole expansion was used, and the time window
was reduced in 1l0-us steps from 250 to 110 us. Four different data in-
crements were used, and the results are illustrated in Fig. (6). Values
for the three largest data increments do not span the entire time scale.

This is due to the requirement of a minimum number of data points for the
expansion as determined by the order of expansion and the data increment.

The minimum number of data points required by the algorithm is given by

Min. # pts. = (Data Increment +1) *Order of Expansion. (31)

With a 15-pole expansion the minimum number of data points for a data
increment of 11 is 180. Since the waveform was sampled at 1 MHz, the
minimum time window for a data increment of 11 is 180 us.

0.25

0.24

0.23

0.22

0.21—

DATA INCREMENT

AMPLITUDE (ARBITRARY UNITS)

0.9}~

| ) I B | L i 1 1 T B
250 240 230 220 210 200 190 180 170 160 150 140

TIME WINDOW (us)

L
130 120 o

Fig. 6 - Amplitude of the steady-state driving
frequency poles for waveform in Fig. (5)
obtained with 15-pole expansions and
various data increments
The results in Fig. (6) are consistent for large time windows but vary
as the time window is reduced.

Since in general the largest possible data
increment should be used, the appropriate portions of Fig. (6) have been
reproduced in Fig. (7).
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Fig. (7) - Segments of data in Fig. (6) illustrating
effect of minimum time window

Figure (7) illustrates the one exception to the largest possible data
increment rule. The values at 180 us for a data increment of 11 and at
150 us for a data increment of 9 show marked deviations from the average
value. Both of these cases correspond to minimum values for the time
window of the associated data increment. The difficulty lies in the matrix
generated from the Prony difference equations. If no a priori poles are
used, the minimum number of points in Eq. (31) generates an NXNn matrix
where n is the order of expansion. Since this is a square matrix, no least-
square technique is required to solve the equations. However, if a priori
poles are used, the matrix generated is an (n-A4)xn matrix where % is the
number of a priori poles used in the expansion. The matrix represents an
overdetermined set of equations for n-4 unknown coefficients, and a least-
square technique must be used to solve the equations. When X is small in
comparison to N or when the matrix is nearly a square matrix, the least-
square technique introduces considerable error into the calculation. all
of the measurements in Figs. (6) and (7) were done with an order of
expansion of 15 and with two a priori poles. By reducing the value of
the data increment when the minimum time window is approached, the matrix
is no longer nearly a square matrix, and the least-square technique returns
consistent values as illustrated in Fig. (7). Thus the largest data
increment should be used except when the minimum time window is approached,
and then the next lower value should be used.

Figure (7) also indicates that for time windows of less than 150 us

an insufficient portion of the waveform is being used to yield useful
resalts.
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Order of Expansion

The order of expansion is the most difficult variable to determine.
There must be a least as many poles in the expansion as there are in
the signal. However, a knowledge of the structure of the signal does
not guarantee correct results. As illustrated in Fig. (4) a 3-pole
expansion with two poles entered a priori was sufficient for a waveform
that was known to have only three poles when the signal-to-noise ratio
was 50 dB. When the signal-to-noise ratio was lowered, the 3-pole ex-
pansion yielded incorrect results.

In general the more poles used in the expansion together with the
a priori poles, the better the results. Unfortunately the larger the
order of expansion, the longer the running time for the program. The
optimum value is strongly dependent on the complexity of the waveform,
the signal-to-noise ratio, and the length of the time window. To get
some idea of the required order of expansion for echo-reduction
measurements, the waveform in Fig. (5) was again analyzed. Five differx-
ent orders of expansion were used on time windows that varied from 250
to 150 us. The data increment was determined by the results of the
previous section.

In Fig. (8) the amplitude of the steady-state driving frequency pole,
which was entered a priori, has been plotted against the length of the
time window. The 15-pole expansion deviates by less than 0.1 4B over
the entire time window span. The 12-pole expansion is consistent down
to a time window of 180 us. However, the remaining expansions yield
inconsistent results and vary from one time window to the next. This
indicates that the order of expansion must be at least 15 for echo-
reduction measurements of simple homogeneous plates and may have to be
higher for nonhomogeneous plates.
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Fig. (8) - Amplitude of the steady-state driving frequency poles for wave-
form in Fig. (5) obtained with various orders of expansion
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Time Window

investigated.

AMPLITUDE (ARBITRARY UNITS)

frequency poles entered a priori.
to 130 us in 10-us steps.

The minimum time window necessary for the algorithm to yield useful
results is dependent on the acceptable error and the signal-to~ncise
ratio. Since the signal-to-noise ratio is a function of the reflection
coefficient of the panel the error associated with a particular time
window will vary from one panel to another.
of the minimum time window, the steel panel described earlier was

Three waveforms were obtained for the reflection of a step sinusoid
from the steel panel at frequencies of 2, 2.5, and 3 kHz.
to-noise ratio in each was approximately 40 4B.
analyzed with a 15-pole expansion that included two steady-state driving
The time window was varied from 250

0.22—

0.20

ole~

0.14—

0.ce

2.5 kHz
o.la—\_/w\

t/2 d8

! i | | I 1

250

i T ——

210 210 190 170 150 130 1o
TIME WINDCW (us)

Fig. (9) - Amplitude of the steady-state driving

frequency poles as a function of time window

13

In order to obtain some idea

The signal-
Each waveform was
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In Fig. (9) the amplitude of the driving frequency pole has been
plotted against the length of the time window for each of the waveforms.
Since the actual amplitudes are unknown, the average values of the flat
portions of the curves were used as the correct amplitudes. Arbitrarily
choosing an allowable error of 0.25 dB from the average value as a measure
of the accuracy of the algorithm produced minimum time windows of 140 us
for the 3-kHz waveform, 170 us for the 2.5-kHz waveform, and 230 us for
the 2-kHz waveform. These time windows correspond to 0.42, 0.425, and
0.46 wavelengths, respectively, for 2.5 and 2 kHz. Since these values
are in good agreement, a general rule of approximately half a wavelength

as the minimum time window has been used for the data obtained in this
report.

EXPERIMENTAL PROCEDURE

There are two procedures for analyzing echo-reduction measurements
with the modified Prony method. In the first, referred to as the two-
window method, the projector is positioned 170 cm and the probe 15 cm
in front of the panel. A USRD type F36 standard transducer is used as
the projector while the probe is a USRD type H52 standard hydrophone.

The projector is driven by a step sinuscidal signal of l-ms duration
that produces a 200~us segment of incident signal, at the probe,

followed by 200 us of incident plus reflected signal before the arrival
of the diffracted signal from the panel edges. This allows equal periods
of the incident and reflected signals to be observed.

The waveform at the probe is sampled at 1 MHz, and approximately
50 to 100 waveforms are averaged to reduce the incoherent noise level.
The waveform is then divided into two time windows--one containing
only the incident signal, and the second containing the incident plus
reflected portions of the signal. Figure (10) illustrates the waveform
and the two time windows used in analyzing the wavefcrm. Both time
windows are analyzed by the modified Prony method to find the amplitudes
of the steady-state driving frequency poles. A l5-pole expansion is used
with three poles entered a priori. Two of the a priori poles are the
complex conjugate pair representing the driving frequency, and the third

a priori pole is a real pole associated with a high-pass RC filter on the
input side.
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TIME WINDOW TIME WINDOW
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0.2
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|
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~-0.6} |
-08f- |
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Fig. (10) - Illustration of two-window method. Two
time windows are obtained from the waveform;
the first containing only the incident signal
and the second containing the incident plus
reflected signal.

The complex amplitude of the incident portion is then phase shifted
by an amount equal to the time separation of the two time windows and
substracted from the complex amplitude of the incident plus reflected
portion. This yields the complex amplitude of the steady-state driving
frequency pole for the reflected signal. The echo reduction is then
calculated as

AI
Echo reduction = 20 log /Ar ‘ (35)

where A; and Ay are respectively the moduli of the amplitudes of the
incident and reflected signals.

While the two-window method yields good results, it is not as
accurate as the second method, to be discussed below, owing to phase
errors. The algorithm does a much better job of finding the correct
modulus of the amplitude than it does in finding the correct phese.
This phase error introduces an error into the echo-reduction calcu-
lation when the incident amplitude is phase shifted and substracted

17




from the incident plus reflected amplitude. Not all of the incident
signal is cancelled, and the amplitude obtained does not represent the
reflected signal only. The magnitude of the error will depend on the
phase error and the relative phase of the direct and reflected signals.
If the length of the time window is equivalent to at least one period
of the driving frequency, frequencies above 5 kHz for a 200-us time
window, the phase error is negligible and the two-window method is
sufficient. However, as the frequency is reduced, the phase error
increases and an alternate method must be used.

:
:
!
¢
X
;
§
H
"
£
i

The second method, referred to as the difference method, eliminates
the effect of the phase error in the algorithm by directly subtracting
out the incident signal. This method was basically described in
connection with dataacquisition for the section on the data increment.
It consists of performing two separate measurements--one with and one
without the acoustic panel in position. The two recorded waveforms
are then directly subtracted to yield the reflected signal from the
panel as illustrated in Fig. (11). Then the modified Prony method is
used to analyze the incident and reflected waveforms separately to
obtain the amplitudes of the driving frequency poles.

~4.-.2




) 1 1 J
85 255 425 595 765
TIME (us)

Sequence illustrating difference method. The

top waveform was obtained with panel in position
while the micddle waveform was obtained without the
panel. The lcwer waveform was obtained by direct

substraction of the width and without panel waveforms.
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The difference method has the additional advantage of allowing
longer portions of the reflected signal to be observed. In the two-
window method the optimum position of the probe is 15 cm in front of
the panel since this allows equal segments of the incident and reflected
signals to be observed. However, in the difference method the measure-
ment performed without the panel produces the waveform for the incident
signal. This allows the panel to be positioned close to the probe for
the second measurement. With the probe 5 cm from the panel, 250 us of
reflected signal can be observed prior to the arrival of the diffracted
signal from the panel edges. However, care must be taken to insure that
the two measurements are identical. In addition a least-square sub-
traction should be used in obtaining the reflected signal to compensate
for any gain and phase changes that may occur between measurements.

The disadvantages of the difference method are the additional time
required for separate measurements and an inherent phase error due to
digitizing the waveform. The time factor essentially doubles the time
required to perform the measurements while the phase error becomes a
problem only at high frequencies where the two-window method is accurate.
This results in an obvious choice of using the two-window method, except
at low frequencies (below 5 kHz) where the difference method is more
accurate.

EXPERIMENTAL RESULTS

In Figs. (12), (13), and (14) the results of echo~-reduction measure-
ments of steel and aluminum panels have been plotted against theoretical
curves. The measurements were performed on 0.95-cm~thick and 76.2-cm-
square panels in the anechoic tank at USRD. The noise level in the
anechoic tank during the measurements was approximately 40 dB below the
incident signal level.

In Fig. (12) the measurements of the steel panel were processec by
the difference method. Measurements were made with and without the panel
in position, and 35 waveforms at each frequency were averaged. The no-
panel waveforms were directly subtracted from the waveforms with the
panel in position to obtain the waveform of the reflected signal. Each
waveform was then processed with a 15-pole expansion that included the
two driving frequency poles a priori. The results deviate from the
theoretical curve by a few tenths of a dB.
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Fig. (12) - Results of Prony measurements of a 0.95-cm~
thick steel panel processed by the difference
method
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In Figs. (13) and (14) the results of measurements on an aluminum
panel have been plotted against theoretical curves. The aluminum
plate was chosen since it has a larger echo reduction than the steel
panel and was a better test of the method. The results in Fig. (13)
were obtained in the same manner as the data for the steel panel
except three a priori poles were used. The third a priori pole was
associated with an RC filter on the input side of the electronics.
The experimental results deviate from the theoretical curve by
approximately 0.25 dB.

In Fig. (14) the measurements were processed by the two-window
method. The probe was positioned 15 cm from the panel to provide
equal segments of the incident and reflected signals and 50 separate
measurements were averaged to obtain the waveforms., Each time window
was processed with a 15-pole expansion that included three a priori
poles. The results deviate fiom the theoretical curve by an average
of 0.35 dBR. However, the 3-kHz measurement deviates by 1.05 dB, a
result explained by the previously described phase error associated
with the two-window method.

In addition to the data presented here, measurements on a 1.27-
cm—thick steel plate have been performed at 2 and 2.5 kHz with the
difference method. These measurements deviated from the theoretical
values by approximately 0.5 4B and indicate that the method is capable
of performing accurate measurements down to 2 kHz.




Fig. 13 - Results of Prony
measurements of a 0.95-cm~
thick aluminum panel processed
by the difference method.
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Fig. 14 - Results of Prony
measurements of a 0.95-cm~
thick aluminum panel processed
by a two-window method.
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CONCLUSION

The experimental results indicate that the modified Prony method
is capable of making echo-~reduction measurements down to 2 kHz on
simple homogeneous panels with an error no greater than 0.5 dB. There
have been no measurements, as yet, on high Q or lossy panels. However,
these panels should not present an obstacle as long as the required
number of terms in the expansion does not become too large.
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APPENDIX A

OVERVIEW

The following modified Prony program listing has been written in
FORTRAN 4+ and is compatible with the Digital Electronics Corporation
PDP 11/45 computer with the system RSX-11D. The program is designed
to use data files, with a maximum of 1024 data points, that have the
short IAG header format. Current dimension statements have limited
the program to a maximum order of expansion of 15 and a maximum of
5 a priori poles.




APPENDIX B

LIST OF VARIABLES IN PRONY

e ol o g

ve s, -,

Ao aagv A

J number of data points in data file
1sp initial start point in data file
NPTS number of points in time window
IBD data increment
NR order of expansion
Ia number of a priori poles
DX data file time increment
DEV mean square deviation
ROOTS(I) array of a priori poles (s plane)
ROOTZ (1) array of z plane poles
DATA(I) array of data points
COE(I) coefficients of Prony polynomial
ACDEF (I) array of amplitudes
COEFE (I) coefficients of a pricri polynomial
E(I,K) - matrix of Prony difference equations

F(I) =~ vector associated with Prony difference
equations
A(I,K) - matrix of equations for amplitudes

R(I) - vector associated with A(I,J)

-NOT FILMD

PHECEDING PAGE BLANK




APPENDIX C

INPUT EXAMPLE

EUN _FRONY

ZNTER FILE SFECS,
cERON T 3 f)

ENTER INITIAL START FOINT.252)

ENTER NUMBER OF FOINTS IN TIME WINDOW,.Z00 )
ENTER BASIC DaTA INCREMENT.(0DD INTEGER) ll)
ENTER QORDER OF EXFANSION.1S)

8 YOU WISH %U ENTER AFPRIORI ROOTS? (Y/N) X )
ENTZR % OF APRIORI P LEETQL)

ENTER FOLE WALUES &%
REaALy IMAGINARY

X Nt e
i QeDel@yav.nnue )

2 0a-l080849.3552 )

FINISHED

Frgegp
Inclialltuuhwbrlmu.b

- -

Note: 1), All underlined portions are user supplied

2), 3 1indicates 'RETURN'

-




Lt
preaCeopa

APPENDIX D

OUTPUT EXAMPLE

Py gyrr T

DATE= 03-MAR-80

TIME= 10:38:03

INPUT DATA FILE INFORMATION
PROK.DHT; 11 .
FILE HEADER INFORMATION :

e 1024 1 0.00000 0. 10000E-03 (M4 2
SKHZ
INITIAL START POINT= 252
TIIE WIKDOW= ©.20000E-03
BASIC DATA INCREMENT= 11
ORDER OF EXPANSION= 13
APRIORI POLES

» REAL, IMAG

©0.00000E+CO 0. 1885G0LE+03

0.00C00E+00-0. 188505+05

Z-PLANE POLES.

RESIDULS.

s BT e

1 0.99982E+02 0.1834CLE-01 1 0.60233E-01 -0.10684E+00

2 0.99922E+60 -0.18848E-01 2 0.6025G3E-01 0. 1G024E+GO

3 0.99023E+09 0.62862E-01 3 -0.37841E-03 0.50109E-03

4 0.99C93E+00 -0.62862E-01 4 ~0.37840E-03 -0.3010CE-03

4] 0. 10032E+01 0.10119E+00 5 -0.37830E-03 0.42420E-03
"6 0.1G0J2E+01 -0.10119E+00 6 -0.37830CL-03 -0.424Z0E-03

? 0.97139L+00 0.148080E+00 7 -0.31909E-02 -0.21536E-03

8 0.97139E+00 -0.148C0E+00 8 -0.319G9E-02 0.21357E-03

9 0.90C45L+00 0.18233E+00 9 -0.47842E-03 -0.60498E-03

10 0.98063E+00 ~0.18235E+00 10 ~-0.47842E-03 0.60498E-03 ]
11 0.96659E+00 0.23580E+00 11 0.16859E-03 0.74164E-04 ‘
12 0.96639E+00 -0.23580E+00 12 0.16839E-03 -0.74165E-04

13 0.97R33r+00 .20406E+400 3 0. 1006:42E-02 -0.13310L-02

14 0.030330+09D -0.20400E+00 14 0.13642E-02 0.13310LE~02

ficaAl SQUARS DEVIATION:  0.3061E0C-C6
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;
APPENDIX E g
PRONY LISTING ;
c :
C
C ERONY MAIN FROGRAM
c ¢
COMFLEX ROOTS(10)»ROOTZ(135) »ACOEF(15),E(15,15),F (135) :
DIMENSION COEFE(16)sA(1S5y13)sR(1S)yIATAC1024)yCOE(16)
BYTE TIM(8) »DAT(?) ¢
c
CALL DATE(DAT?
WRITE(2yS00)DAT
CALL TIMEC(TIM)
WRITE(Z2sS10)TINM
CALL RFILES(DATA»JsDX)
C
C OBETAIN INITIAL START FOINT
¢
WRITE(69520)
READ(S,»S30)IEF
WRITE(2,3335)IGF
c .
¢ CHECK THAT ISP IS GREATER THAN ZERC
c
IF(ISF-1)5510+10
5 WRITE(&y540)
GO0TO 1
c
(s 4 ORTAIN NUMEBER OF FOINTS IN DATA WINDOW
C
10 WRITE(6yS50)
READ(S s SH0)INFTS
TW=DXXNFTS
P C ’
C CHECK THAT WINDOW DOES NOT EXCEED IIATA RANGE
C
IF(ISF+NFTS-J-1)20520515
15 WRITE(65570)
GOTO 1
20 WRITE(2,5R0)TW
G
0 OETAIN BASIC DATA INCREMENT ,
b !
2% WHITE(6+550)

READCS» 600) IEL

33 ty i..‘
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CHECK THAT IERD' IS AN ODD INTEGER

IJ=IRL/2
IF(2%IJ-IEBN)3Sy» 30+ 30
WRITE(69610)

GOTO 25

OBTAIN ORDER OF EXFANSION
WRITE(69620)

READ(S» 63C)NR

WRITE(2»640)NR

ARE THERE ANY AFRIORI ROOTST
WRITE(69650)

READ(S,660)1I2
IF(IZ-’Y’)40,50,40

NO AFRIDRI ROOTS

Ia=0

COEFE{(1)=1.0

COEFER(2)=0.0

COEFE(3)=0.0

CHECK THAT THERE ARE SUFFICIENT DATA FOINTS

IF(NFTS-NRX(IBLO+1)>)45»70,70

WRITE(S69670)

GO TO 10

CAlL FRIORI FOR AFRIORI ROOTS

CALL PRIORIC(ROOTSsROOTZ,»COEFERsIAsDXs IED)

CHECK THAT 1A WAS NOT SET EQUAL TO ZERO IN PRIORI
IF(IA)YSS5»40,55

CHECK THAT THERE ARE SUFFICIENT DATA FOINTS FOR THE
CASE WITH AFRIORI ROOTS.

T

IF(NFTS-NRX(IBD+1)+1A)60165965
WRITE(61670) . ;
GOTO 10 1
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70

G

COCONGGTO
t
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w

oood

CHECK FOR CASE WHERE NUMEER OF AFRIORI ROOTS=
ORDER OF EXFANSION

IF(NR-IAY66,110,70

NR=IA

GOTO 110

CALL MATRIX(AsRsNRyIASNFTS,COEFEsDATA»ISF,IRO,IL)

CHECK RETURN FROM MATRIX
IF(IL-10)75510+75

CHECK FOR THE CASE WHERE THERE IS ONLY ONE NON-AFRIORI
ROOT

IF{NR-IA~1365+80,85
OETAIN SINGLE DLESIRED ROOT

ROOTZ(IA+1)=CHFLX(-R(1)/AC151)+,0.0)
GOTO 110
CALL SOLVER(A»RyCOE>NRsIAYIE)

CHECK EXIT FROM SOLVER

IF(IBE)95+90, 95

NR=NR-1

WRITE(2s680)NR
IF(NR-TA)&55110,70

CALL FRQL(COE,NRy»IERsROOTZsIA)

CHECK RETURN FROM FRQL

IF(IER?>110,1105105
NR=NR-1

GO T0 70
IFC(IED-1)25,12051158

CONVERT Z-~-FLANE ROOTS TO IED=1

CALL ROOTC(ROOTZ» IEDyNR)

WRITE(2y700) ;
DO 125 I=1,NR i
WRITE(29710)1yROOTZ(I)

CONTINUE




C

130

135

140

170
(o

C

500
510
520
S20

bl [ -4
B3s

S40
550
560
570
S890
390
600
610
620
620
640
650
&40
670
4680
700
710
720
730
750

OBTAIN ACOEF

CALL RESINU(DATASE»FyROOTZsNRyNFTSs ISF)
CALL SOLVE(E,F,ACOEFsNRsIE)
IFCIE)1405135,140

CALL ROOTE(ROOTZyNR)

GOTO 130

WRITE(2,720)

DO 150 I=1sNR

WRITE(2,710)I,ACOEF (1)

CONTINUE

CALL MSDEV(ISF,DATAsDEVsNFTSs»ROOTZsACOEF » NR)
WRITE(2,730)IEV

WRITE(6>750)

FORMAT STATEMENTS

FORMAT(/916Xy’ DATE= ‘s9A1)

FORMAT(/916Xy’ TIME= “»8A41)

FORMAT (/s *$SENTER INITIAL START FDINT.’)

FORMAT (I 4} A

FORMAT(/»10Xs” INITIAL START PFOINT= ‘+14)

FORMAT(/»’ INITIAL START FOINT MUST EBE GREATER THAN ZERG.’)
FORMAT (/9 "$ENTER NUMEER OF FOINTS IN TIME WINDOW.’)
FORMAT(IA)

FORMAT(/y’ DATA WINDIOW EXCEEDNS DATA FILE.’)
FORMAT(/s16Xy’ TIME WINDOUW= ‘yE12.9)

FORMAT(/» $ENTER BASIC DATA INCREMENT.(ODD INTEGER) )
FORMAT(I3)

FORMATC(/y* BASIC LATA INCREMENT MUST RE OOD INTEGER. ‘)
FORMAT(/y $ENTER ORDIER OF EXFANSION, ) '
FORMAT(I3)

FORMAT(/s16Xs’ ORLDER OF EXPANSION= ‘,I3)

FORMAT(/y /3110 YOU WISH TO ENTER AFRIORI ROOTS? (Y/N) 7))
FORMAT(1A1)

FORMATC(/y’ INSUFFICIENT NUMEER OFDATA FOINTS.’)
FORMAT(/216Xs* ORDER OF EXFANSION= ‘5»1I3)

FORMAT (/210X Z-FLANE FOLES.’s/)

FORMAT (/26X s I296X»EL12.Sy5X9EL12,.5)

FORMAT(/910Xy’ RESIDIUES. y/)

FORMAT (/914X MEAN SQUARE DEVIATION= ‘»E12.5)

FORMAT (/s FINISHEL’)

CALL EXIT

ENMND
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FRONY SUEBROUTINE FOR ENTERING AFRIORI FOLES INTO VECTOR

OF S—-FLANE FOLES.
FROGRAM ALSO CONVERTS S—-FLANE FOLES TO Z-FLANE FOLES

ANDI COMFUTES B COEFFICIENTS FOR FRONY DIFFERENCE EQUATIONS.
DIMENSIONING HAS LIMITED SUEBROUTINE TO S5 POLES.

SUEROUTINE FRIORI(ROOTSsROQOTZ»COEFE»IAsDIXyIRL)

ROOTS=VECTOR OF S-FLAME FOLES

"ROOTZ=VECTOR OF Z~-FLANE FOLES

COEFE=VECTOR OF B COEFFICIENTS ORDEREL FROM LOW TO HIGH
IA=NUMERER OF AFRIORI ROOTS

DX=DATA FILE TIME INCREMENT

IRD=RASIC DATA INCREMENT

COMFILEX ROOTS(S5)»ROCTZ(15)sE(6)sC1
DIMENSION COEFE(6)

ENTER NUMEER OF ROOTS

WRITE(S,100)

REAI(S»110Q) IA
IF(IAYP0,20:3

ENTER ROOTS AS COMFLEX NUMRERS

WRITE(6+120)
WRITE(65130)

00 10 I=1,sIA
WRITE(6,140)1
READNCS» 150)RO0OTS(ID
CONTINUE
WRITE(2,160)
WRITE(2y170)

Do 15 IX=1,IA
WRITE(2,180)IX,RO0TS(IX)
CONTINUE

CONVERT TO Z~FLANE

C=IED%xDX
C1=CHMFPLX(C»0.0)
L0 20 IX=1,IA




ROOTZ(IX)=CEXF(ROOTS(IX)%*C1)
CONTINUE
CONTINUE

COMPUTE B COEFFICIENTSsSET ALL TERMS IN B(I)=

DO 30 I=1y6
BEC(I)=CHMFLX(1.,050.0)

CONTINUE
CHECK VALUE OF IA AND SET INITIAL VALUES

IF(IA-1)90,40,45
COEFEBE(1)=REAL(ROOTZ(1))
COEFER(2)=1.0

GO TO %0
B(1)=RO0TZ(1)XROOTZ(2)
R(2)=-(ROOTZ{(1)+ROOTZ(2))
IF(IA-2)90y6S5s30

ENTER LOOF FOR CALCULATING COEFFICIENTS

[0 60 R=3yIA

DO 55 J=R»2,-1
B(J)=R(J-1)-ROOTZ(KIXR(J)
R(1)=-B(1)XROOTZ(K)
CONTINUE

g 70 I=1,IA+1
COEFB(I)=REAL(R(I))
CONTINUE

RETURN

FORMAT STATEMENTS

FORMAT (/s *$ENTER & OF AFRIORI FOLEST?T’)
FORMAT(I2)

FORMAT(/»* ENTER FOLE VALUES AS’y/)
FORMAT(/r16Xs* REALy IMAGINARY ' »/)
FORMAT(/» %/ 12+,3X)

FORMAT(2E12.5)

FORMATC( /927X ” AFRIORI FOLES /)
FORMAT(ZXy»’ #7515Xy’ REALY 76Xy IMAG +/)
FORMAT (/97X 12,13Xs2E12.5)

END

1
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FRONY SUBROUTINE FOR GENERATING THE FRONY DIFFERENCE

EQUATIONS IN THE FORM AX%(COE)>=Rs WHEN AFRIORI FOLES
(RDOTZ) ARE GIVEN.‘A’ IS GENERATED EBY A VIRTUAL MATRIX

FREMULTIFLIED BY IT’S TRAMSFOSE.

SUBROUTINE MATRIX(AsRsNRs»IANFTS»COEFRDATAsISFy IR, IL)

A=MATRIX CONTAINING LIFFERENCE EQUATIONS

R=COLUMN VECTOR WHICH ARISES DUE TO THE CONSTRAINT
THAT THE HIGHEST BETA COEFFICIENT EQUAL ONE

NR=NUMEER OF FOLES IN FRONY EXFANSION

TA=NUMBER OF AFRIORI FOLES

NFTS=NUMBER OF FOINTS IN DATA

COEFR=COEFFICIENTS FROM AFRIORI FOLES

DATA=DATA FILE

ISF=INITIAL START FOINT IN DATA

ITED=BASIC DATA INCREMENT

IL=RETURN COIE

LDIMENSTION AC(15,15)sR{15)yCOEFE(S)sIATA(1024)
DEFINE VARIAEBLE RANGE
IC=NR~-IA

IR=NFTE-NRXIERED

IS=ISF~1

CHECK FOR EXACTLY SOLVELD' CASE
IN=IR-IC

IFCINILQ»20+50

IL=10

WRITE(65S500)

RETURM

EXACTLY SOLVED! CASE

Do 36 I=1,IC

pg 30 J=1.1IC
ACT s J)=0.0

00 30 IK=1sIA+1




30

40

c

C

50

100
110

500

AT J)=COEFBC(IRKIRDATAC(I+IS+(IRK-1)%IBO+(J-1)XIED)+ACI» J)

CONTINUE

Do 40 I=1,IC

R(I>=0.0

D0 40 IK=1,IA+1
R(I}=R(I)-COEFR(IKIXDATA(I+IS+(IK-1)XIBO+ICXIRL)
CONTINUE

GO TO 80O

LEAST SQUARE TYFE SOLUTION

[0 70 I=1,IC

0o 70 J=I1,1C

A(T»J)=0,0

R(I)=0.,0

Do 70 K=1,1IR

B1=0.0

E2=0.,0

R1i=0.0

DO &40 IK=1,IA+1
EB1=COEFBC(IRIYKDATA(K+ISH(IK-1)XIRD+(J-1)XIEBI +E1
R2=COEFR(IK)XDATA(K+IS+(IK-1)XIBO+(I-1)XIEBDO)+E2
R1=COEFB(IKIYXDATA(K+IS+(IK-1)XIRO+ICXIRBI)+R1
CONTINUE

A(I» J)=BLXE2+A(I s J}

RCI)=R(I)-R1XE2

CONTINUE

IF(IC-1)110,1:0,90

Do 100 I1=2»,1IC

Do 100 J=1,1-1

A(Iy)=ACdy 1)

CONTINUE

IL.=36

RETURN

FORMAT(/y’ INSUFFICIENT NUMBER OF DATA FOINTS,IN (MATRIX)., !

END




FRONY SUEROUTINE FOR SOLVING THE LEAST SQUARE EQUATIONS
c GENERATED' IN MATRIX TO FIND THE COEFFICIENTS OF THE
FRONY FOLYNOMIAL

SURROUTINE SOLVER(AsRyCOE»NR»IAsIR)

DIMENSION ACLS»13)sR(15)sCOEC16) 9 X(1S5) s IKTACLS)

IEk=1

N=NR-IA

o 10 I=1sN i

IKTA(I)=I ;
|
¥

10 CONTINUE
K=1

CHECK LEADING TERM

IF(A(KYK))30,20,30

20 CaLl. INTERD(AsR»IKTAYKsNyIC1) g

’ IF(IC1)>30+25530 ‘

25 IE=0 '
' RETURN

CONTINUE

DIVIDE ROWS EBY LEADING TERM

Ci1=A(K,K)
R(K)=R(K)/C1
O 40 J=KyN
ARy ) =A(Ks I3 /C1
CONTINUE

SUBTRACT K ROW FROM ALL ROWS EELOW

0D0 S0 I=K+1sN
RCIV=R(I)-R(KIKACT KD
Ci=A(I»K)

0 S0 J=K»N

ACL,y D =ACI»J)-A(K»J)XC1
CONTINUE




60

70

80

K=K+1
IF(K-N)Y15+60,40
X(NI=R(NI/A(NIN)
00 70 I=N-1s1s-1
XC¢(I)=R(I)

00 70 J=NyI+1,s-1
XCI)=X(I}=X(L)XA(Is J)
CONTINUE

oo 80 I=1sN
J=IKTA(I)
COE(J)=X(1)
CONTINUE
COE(N+1)>=1.,0
RETURN

ENL
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SUEBRQUTINE INTERCHANGES ROWS AND' COLUMNS OF MATRIX A AND
VECTOR R WHILE KEEFING TRACK OF CHANGES IN VECTOR IKTA.

SUBROUTINE INTEROCAYR» IKTA»KsNsIC1)

DIMENSION AC15,15)sR(15)sX1T(15)sX2T(15)»IKTA(16)

IC1i=0

IR1=K

X1=0.,90 )
DO 10 I=KsN

IF(ARS(X1)-ABRS(A(K»I)}))5+10+10

IC1=1
X1=A(K:I)
CONTINUE

IFC(IC1)1S+15+20

RETURN

I=IR1

0O 30 J=1sN
X1T(D)=A(I»J)
CONTINUE
I=1IC1

[0 40 J=1sN
X2T()=Aa(Is 1)
CONTINUE
I=IR1

[0 S0 J=1»N
AT, D=X2TD)
CONTINUE
I=IC1

D0 80 J=1iN
AT D)=X1Tv D)
CONTINUE

INTERCHANGE COLUMNS

J=IR1
DD 70 1=1,»N
X1T<I)=ACTI s )
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70

80

90

110

CONTINUE
J=IC1

00 80 I=1,N
X2AT(I)=ACI» J)
CONTINUE
J=IR1

0o 90 I1=1,N
ACT» ) =X2T(I)
CONTINUE
J=IC1

0O 110 I=1,N
ACLy J)=X1T(I)
CONTINUE
RI1T=R(IR1)
R2AT=R(IC1)
RC{IR1)=R2T
RCIC1)=RI1T
I=IKTA(IR1)
J=IKTACIC1)
IKTA(IR1)=y
IKTACIC1)Y=1
RETURN

END
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FRONY SUEROUTINE FOR CONVERTING THE ROOTZ FOUND WITH
THE BASIC DATA INCREMENT NOT EQUAL TO ONE (ROOTZ)XXIRD

TO THE ROOTZ WITH BASIC DATA INCREMENT OF ONE.

SUEBROUTINE ROOTC(ROQOTZ» IEDsNR)

ROOTZ=CONTAINS THE ROOTZ*%IED ON RETURN CONTAINS ROOTZ
IRD=RASIC DATA INCREMENT

COMPLEX ROOTZ(13)

D0 20 I=1sNR
A=AIMAG(ROOTZ(I))
B=REAL(ROOTZ(I))
J=1.0E+3%XA
K=ININT{(1.,0E3%R)
IF(JY10+5+10
IF(K)é698510

E=ARS (REAL(ROOTZ(I)))
B=EXX(1/FLOATC(IERD))
ROOTZ(I)=CMFLX(=-E»0,0)
GOTO 20 :
ROOTZ(I)=CEXF((CLOG(ROOTZ(I>))/IELD
CONTINUE

RETURN

END

FRONY SUEROUTINE FOR DELETING ROOTS WHEN RESIIU FAILS

SUBROUTINE ROOGTE(ROOTZ:sNR)
COMFLEX ROOTZ(13)

WRITE(S9100)

D0 10 I=1sNR
WRITEC(S59110)I,RO0TZ(I)
CONTINUE

WRITE(62120)
READ(S»130)IX

45




KRl

30
c

100
110
120
130
1490
150

D0 20 I=IXsNR-1
ROODTZ(I)=ROOTZ(I+1)
CONTINUE
ROOTZ(NR)=CMFLX(0.,0,0.0)
NR=NR-1

WRITE(69140)
READNC(S,»150)1IJ
IF(IJ=-“Y*)30,15,30
RETURN

FORMAT STATEMENTS

FORMAT(/» '1Z-FLANE FOLES’)
FORMAT(3X»I2,3X»E12,5,4XyE12.5)

FORMAT(/» "$WHICH FOLE IS TO EE DELETED?’)
FORMAT(I2)

FORMAT(/» " $DELETE ANOTHER?’)

FORMAT (1A1)

END
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FRONY SUBRROUTINE WHICH LOADS THE MATRIX E AND VECTOR F

WITH THE LEAST SQUARE EQUATIONS FOR CALCULATING THE
RESIDUES ASSOCIATED WITH THE FOLES.

SUBRROUTINE RESIDNUCLATASE»FyRCOTZyNRYNFTS» ISF)

COMFLEX ROOTZ(I1S)»A»EyE(1S918)F(15)
DIMENSION DATA(1024)

A=CMFLX(1.0+0.0)

00 10 I=1,NR

00 10 J=IsyNR
B=(CONJG(ROOTZ(I}))XRODTZ(J)
IF(AIMAG(E)}Ss1+5
IF(REAL(E)-1,0)5+2+5

ECI» J)=CHMFPLX(FLOAT(NFTS)s0.0)
GO 70 10
EC(I»)=(A-BXX(NFTS) )/ (A-B)
CONTINUE

0o 20 K=1:NR
F(K)=CMFPLX(DATACISF)>»0.0)
D0 20 I=1s(NFTS-1)
F(R)=DATACISF+I)K(CONJG(ROOTZ(K) )XXI)+F(K)
CONTINUE ‘

D0 30 I=2sNR

00 30 J=1,I-1
E(Iyd)=CONJG(EC(IsI))
CONTINUE

RETURN

END
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FRONY SUBROUTINE WHICH SOLVES THE LEAST SQUARE
EQUATIONS GENERATED' IN RESIDU TO FIND THE RESIDUES.
SUEROUTINE SOLVES SIMULTANEOUS EQUATIONS WITH
COMFLEX COEFFICIENTS.

SUEROUTINE SOLVE(EsF»ACOEFsNR»IE)

COMFLEX E(15y15)+F(15)+ACOEF(15)9X(1S)sC1sC2
DIMENSION IKT(1S)

IR=1

FILL ARRAY TO KEEF TRACK OF ROW AND COLUMN
INTERCHANGES

Do 10 I=1,NR
IKT(I)=1
CONTINUE

K=1

CHECK LEADING TERM

CI=REAL(E(K»K))
IF(C3)34+,20,34

INTERCHANGE ROWS ANI' COLUMNS
CALL INTERC(EsFyIKTs»KsNRyIC1)
IF(IC1)34,30s34

IR=0

RETURN

IIVIDE ROWS EY LEADING TERM ]

N=K
C2=E(N»N)

F(N)=F (N)/C2 , j
D0 40 J=K,NR i

E(N«J)=E(NsJ)/C2
CONTINUE




(Heloly)

&0

70

80

90

IF(NR=-N)S0950+ 4S5
N=N+1
GO TC 35

SUBTRACT K ROW FROM ALL ROWS EBRELOW

D0 60 I=K+1sNR
FCI)=F(I)-F(K)XE(I:K)

C2=E(I+K)

Do 60 J=Ks»NR
E(Is3)=EXI»J)-E(K» J)%XC2
CONTINUE

K=K+1 .
IF(K-NR)15,70,70
X(NR)=F (NR)/E(NRsNR)
0 80 I=NR-1,1s~-1
X{I)=F (1)

Do 80 J=NRsI+1,-1
X(I)=XC(I)-X( N XKEC(I» )
CONTINUE

DO 20 I=1sNR

J=IKT(I)

ACOEF (J)=X(I)
CONTINUE

RETURN

ENI!
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SUBRDUTINE INTERCHANGES ROWS AND COLUMNS OF MATRIX E
AND VECTOR F WHILE KEEFING TRACK OF CHANGES IN VECTOR
IKT.

SUEBROUTINE INTERC(E»F»IKT»KsNR»IC1)

COMPLEX E(1S5515)sF(15)sX1T(135) s X2T(15)sR1ITHR2T
DIMENSION IKT(15)

IC1=0

IR1=K

X1=0,0

00 10 I=KsNR

X2=REAL (EC(K»I))

IF (ABS(X1)~ARS(X2))5,10,10

ICi=1

X1=X2

CONT INUE

IF(IC1)15,15,20

RETURN

I=IR1

00 30 J=1sNR

X1T(I=E(Is )

CONT INUE

I=IC1

DO 40 J=1sNR

X2T () =E(IsJ)

CONTINUE

I=IR1

DO S50 J=1sNR

ECIsd)=X2T(J)

COMTINUE

I=IC1

DO 60 J=1»NFR

ECIy )=X1T(J) . )

CONTIMUE ﬂ
4

INTERCHANGE COLUMNS




70

80

?0

110

J=IR1
Do 70 I=1sNR
X1TCI)=EXI»J?
CONTINUE
J=IC1

[0 80 I=1sNR
X2TCI)=ECI» J)
CONTINUE
J=IR1

1o 90 I=1sNR
ECI»JI=X2TC(I)
CONTINUE
J=IC1 ‘
00 110 I=1,NR
EC(IyJ)=X1T(I)
CONTINUE
R1T=F (IR1)
R2T=F(IC1)
FC(IR1)=R2T
F(IC1)=R1T
I=IKT(IRL)
J=IKT(IC1)
IKT(IR1)=J
IKT(IC1)=1
RETURN

END
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FRONY SUBROUTINE FOR CALCULATING MEAN SQUARE DEVIATION
BETWEEN FRONY RECONSTRUCTED FILE AND ACTUAL DATA FILE,

SUBROUTINE MSDEV(ISFsDATA»DEVYNFTSyROOTZ»ACOEF s NR)

DIMENSION DATA(1024)
COMFLEX RDOTZ(15)ACOEF(1S) B

DEV=0.0

00 20 IX=ISFyNFPTS+ISF~1
IT=IX-1ISF

B=CMFLX(0.050.0)

N0 10 IK=1sNR

EB=ACOEF (IK)X(ROOTZ(IK)XXIT)+E
CONTINUE ‘

DEV=(REAL (B)~DATA(IX))XX2+DEV
CONTINUE

DEV=DEV/NFTS

RETURN

END
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FPRONY SUERQUTINE FOR READING INFUT DATA FILES IN
SINGLE FRECISION USING IAG HEADER FORMAT

oG

SUERROUTINE RFILES(OATAs J»IX)

J=NUMEBER OF LDATA POINTS IN FILE
DX=TIME INCREMENT

Oaoo

DIMENSION DATA(1024)sICH(1),IHI(74)
EYTE NAME(34),ITXT(148)»CHAR(2)
EQUIVALENCE(CHAR(1)»ICH(1)) s (IHD(1)sITXT(1))

00

WRITE(&,100)
REALI(S»110)NAy NAME
NAME (NA+1)=0
WRITE(2,120)
WRITE(2,130) (NAME(IX)sIX=1sNA)
OFEN(UNIT=4NAME=NAMEy TYFE="0LLI‘ s FORM="UNFORMATTEL ' y READONLY
IKC=1
READ(4sEND=180+ERR=190)I+JsK»SXy1X» ICH
IKC=IKC+1
WRITE(2,140)
WRITE(2,150)I9JsKsSXsIXsCHARC(L) yCHAR(2)
NUM=CHAR (2}
IF(NUM-1)15,15,5
[0 10 IX=1s,NUM+1
REALN(4yEND=1803ERR=190)IHD(IX)
10 CONTINUE

WRITE(2s160)(ITXT(IX) s IX=1y2¥NUM)
15 IKC=]IKC+1

0 20 IX=1,J

REALNCAyENLI=180sERR=190)DATACIX)
20 CONTINUE

CALl.L CLOSE(4)

RETURN
LOOFORMAT (/s ENTER FILE SFECS.’)
110 FORMAT (Qs34A1)
120 FORMAT (/¢ 146Xy’ INFUT DATA FILE INFORMATION‘s/)
130 FORMAT (16X 7 7y 2%NAXAL)
140 FORMAT( /916Xy’ FILE HEADRER INFORMATION’»/)
1SOFORMAT(/913Xs3I1469sF12,.5YE12.554X91A1,4X914y /)

Ui

53




1460
180

190
200
210

220

FORMAT (16
WRITE(6,2
GO TO 220
WRITE(692
FORMAT ¢’
FORMAT (’
CalL EXIT
END

Xy’ 2¥XNUMEAL)
00) IKC

10)IKC
ENI' OF FILE ON READ-FROG. EXIT’s13s/)
ERR ON READ-FPROG. EXIT’»I3+/)
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SUEROUTINE FRODC(COE NRyIER,RO0TZ,1A) (see note at end of

this appendix)

DIMENSIONED DUMMY VARIARLES
DIMENSION E(16)sQ(16)sCOEC16)FOL(1S)
COMFLEX ROOTZ(13)

NORMALIZATICN OF GIVEM FOLYNOMIAL
TEST OF DIMENSION

IR CONTAINS INDEX OF HIGHEST COEFFICIENT
IER=0
IC=NR-IA+1
IR=IC
EF3=1.,E-6
TOL=1,E-3

KOQUNT=0
IF{IR-1)79,79,2

DROF TRAILING ZEROD COEFFICIENTS
IF(COECIR)14,3+4
f=IR-1
60TC 1

REARRKANGEMENT OF
EXTRACTION OF ZERD
2=1./COE (IR}
IEHD=IR-1
ISTA=1
NSAU=IR+1
JEEG=]

GIVEM FOLYNOMIAL
ROCTS

Gldi=1,
R Iy=COEIR-Ty/C0ECIm)
GOIR)=COEC Y /CQE IR

WHERE ) IS5 THT IMDEY OF THE LOUEST NONZERO COEFFICIENT
DO 9 I=1;1IR
J=NSAV-T

IF(COE(I)127,5,7
60T0(6,8)3JBEG
NSAV=NSAV+1
QISTA) =0,
E(ISTA)=0,
ISTA=18TA+1
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@R

3

[ I w]

e Nw]

Ty )

goTe 7

JEEG=2
0(J)=COELII %D
COECI3=Q(J)
CONTINUE

@\

R

INITIALIZATION
E3aU=0,
QCISTA)=D.
10 NSAV=IR

COMPUTATION OF DERIVATIVE
EXFT=IR-I&TA
ECISTAY=EXFRT
00 11 I=ISTa,IEND
EXFT=ELFT-1.90
FOL{I+:)=EFSXABS(R{I+1i))+EFS

11 ECX+1)=QCIT10KEXFT
TEST OF REMAINING DIMENSTION
IFCISTA-IENT)I12:2G140
12 JEND=IEND-1

COMPUTATION OF S-FRACTION
‘00 19 I=ISTA.JEND
IF{I-ISTAILZ.16513
13 IF(ABB{E(I})-POLCI+L214,14:148

THE GIVEN POLYMOMIAL HAS AULTIFLE

THE CCMMOM FACTOR ARE STORED FRONM
1a NEAU=I]
D0 15 K=Ir,JEND
IF(ABSIE(RII-FOLIEALIILIG LS50
15 CONTINUE
GOTO 21

EUCL IDEAN ALEDRITHN
14 DO 19 K=I.IGMD
EilrtimE (bl FECLD
QXA =E (RS L =0 R EL)

IFCR=-T21&» 17 L3

TEST FOR SHMalL DIVILaR
17 IFABS(Q(I+1))-pPOL(TI¥L))80:80+19
18 Q(K+1)2Q(K+1)/Q(I+1)

POL (IK+1) =POL (K+1)/7ABS(Q(T+1))

ROOTEs THE COEFFICIEN

QACHNSAVY UF TO QOIR)




1
1
1
|

Cr €2
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c:

[N

19
20
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b2
3

"
A3

-3
b

&2
O

28

E(K)=R{K+1-E(K)
CONTINUE
G{IR)=-Q{IFK;

THE DISFLACEMENT EXFT IS SET TO O AUTOMATICALLY.

E(ISTAI=0.,yQ(ISTA+1)r. . sELHSAV-1)»Q(NSAV)»E(NSAV) =0

FORM A DIAGONAL OF THE QI-ARRAY.
INITIALIZATION OF BOUNDARY VALUES
E(ISTAI=0.
NRAN=NSAV -1
E(NRANT1I=0.

TEST FOR LINEAR OR COMSTANT FACTOR
NRAN-ISTA I5 DEGREE-1
IF(NRAM-IETA 24,2321

LINEAR FACTOR
QEISTA+L)=QC(IBTA+1)+EXFT
ECISTA+1)=0.

TE
Tai=ESAY

E(IS
IF{IR-NSAYIAD, 40235

EST FOR UNFACTORED COMMON DIVISOR
A
INITIALIZE QD-aALBORITHM FOR COMMON DIVIEOR
ISTA=NERY
ESAV=E(IETAI
GOTO 10

COMFUTATION OF ROGT FAIR
FeFELFT

£7

L.

=

ST FOR REALLITY

oy
TS
e mo v
IFC0 27928 28

COMPLEY ROOT FAIR
(AN =F
BONRAHFL )=
EOHRANY =T
SOHEANT L =T

GoTo T

REAL RQOT PaALR
Q(NRAN) =P-T
Q(NRAN+1)=P4T
E(NRAN) =0.
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31

3]
%)

(]
[OF]

Ld Ol
[ &1 NN

317

38

REDUCTION OF DEGREE RY 2 (DEFLATION)
NRAN=NRAN-2
GOTO 22

COMFPUTATION OF REAL ROOT
Q(NRAN+1)=EXFT+F
REDUCTION OF DEGREE BY 1 (DEFLATION?
NEAN=NRAN~1
GOTC 22

START QDL-ITERATICOH

JREG=ISTA+1 :
JEND=MNRAMN-1 //

TEFS=EFS &
TOELT=1,E~2 &
KOUNT=KOUNT +1 o
F=Q(NRAN+L) &9
R=ABS (E(NRAN) ) Fep
o
TEST FOR COMVERGENCE &
IF(R-TEFE30, 30532 &
S=AES (E(JENID) &
T
IS THERE A REAL ROOT NEXT N
IF(S-R;32,38y 3 S &
IS DISFLACEMENT SMALL ENOUGH
IF(R=TDELT)36+35,35
F=0.
0=F
10 37 J=JBEG» NRAN
GIJI=0 (I +ECI) ~E( =170
TEST FOR S¥ALL DIVIGOR
TFIATS{G{  =FOL{JI 82,8147
E0dy=RldH 1Y HECI /00D
QINEANEI ) == MRAR D CURANS L -0
BT 54
SrnCULATE DISPLACIAENT FOR OOUELI RO0TS

QUADRATTIC EGUANTION FIR J0UELI ROGTS
XEXZ-(QCNRAN)+O(NRAN+1 )HE(NRAN) ) XX +G(NRAN) XQ(NRAN+1)

P=0.5% (QINRAN)Y+E (NRAN)+Q(NRAN+1) )
0=PxP-Q(NRAN ) XQ(NRAN+1)
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T=SQART(AES(D))
e ‘
C TEST FOR CONVERBENCE
IF{S-TEFS)26524,39
C
, C ARE THERE COMFLEX RUOTS
3% IF(0Y43,40540 q
40 IF(F)42,41,41 3
41 T=-T 3
42 F=F+T T
R=5 3
G270 34 To
¢ 3
c MOGIFICATION FOR COMPLEX RODTS 33
C IS DISFLACEMENT SMALL ENOUGH SE
A3 IF(S-TDELT)44,35,3% Eal
c a4 §
> TNITIALIZATION 143
44 0=G(JBEG)+E(JEEG)-F [
C {S 3
c TEST FGR SMALL DIVISOR n 3
IF(AR;'D‘~FFL'JEF3\;81-8 45 = 2
. - =
a5 T=(T/0;% ~
U=EfJP'B-PQ-Jt GH13/7(0%(1, 4T
V=044
KOUNT=RKOUNT+2
L
c THREEFOLD LGCF FOR COMPLEX DISFLACEMENT
D0 52 J=JREG:NRAN
O=Q{J+1V+ECI+1 ) -U-
e
> TEST FOR SHALL DIVISOR
IFCABE(VU)I-FOLIJ) ) 4é7r44,405
46 TF(J- Nx\{-hl‘alz 47931
THL) 48, 48,51
CAELE L. AT QT )
¢
c TEST FOR SMalLlL LIVISCH
’ 49 IF(ABS(0)-POL(JI¥1))46:46550
S0 W=UKRO/V -
T=TX(U/Q)xx2
@(J) =V4W-E(J~1) ;
i

U=0.




[ Iep]

C

[l

(e N o]

[ 9 I

IF { J-NRAN) 51552, 52
U=G(JH2IXECIHL) /(0K (L 4T))
Y=0+y-U

TEST FOR SMALL DIVISOR
IF{AERS(Q(I) ) ~FOL(J> 81,811,053
E(I)=WxVX(1.+T)/Q0JJ
QINRANTLI=V-E(NRAN)
EXFT=eXFT+F
TEFS=TEFS%k1.1
TOELT=TDELT*1.1
IF(ROUNT-LIMIT) 32,3555

NGO CONVERGENCE WITH FEASIRLE TOLERANCE
ERROR RETURN IN CASE OF UNSATISFACTORY
IER=1

REARRANGE CALCULATED ROATS
IENL=NSAV-NRAN-1
ECISTHI=EGAY
IF(IENTS2y 59,57
pGé 38 I=1.IEND
J=ISTATI
K=NRAN+1+I
E(J)=E(R}
QOIy=RK)
IR=ISTA+IEND

NORMAL RETURN
ITh=ln-1
Ir(Ih/.S!?S!él

HGE CALCSULATED ROOGTS
L IR
n: Ly
£ i)

CALCULATE COEFFICICHNT JVECTIR “ROM ROOTS
POL(IR+1)=1,
IEND=IR-1
JBEG=1
DO 69 J=1,IR
I5TA=IR+1-J
0=¢,
P=Q(ISsTA)
T=(ISTA)
IF(T)65:63,65

CONVERGENCE




[ R

Ci 3

02

SO0

43
64

65

46

68

69

79

MULTIPLY WITH LINEAR FACTOR
DO 64 I=1STArIR
FOLCI)=0-F%XPOL{I+L)
D=FOL{I+1)
GOTO &9
G0T0(56y67) y JEED
JEEG=2
FOL(ISTA)=0,
GAOTO 49

MULTIFLY WITH JQUADRATYIC FACTOR
JREG=1
U=F¥F+THT
F=F4F
0D 4B I=ISTAsIEND
FOLCIY=0~PXPOL(T+12+U%FOL(I+D)
O=FOL{I+1)
FOLCIR)Y=D=~F
CONTINUE
IF(IER)78+70,78

COMFARISON OF COEFFICIENT VECTORS, IE. TEST OF ACCURACY
F=0.

L0 75 I=1:IR

IF(EOE(I))72,71,72 .
9=ARS(FOL(I)) : '
GOTO 73 7

2 0=4RS((FOL{IY=COE([))/COECI)) R

IF(F-0174+75+75 Y’X
F‘=0 ‘\.\'_ 96
COMTINUE R
IF(R-—-TON. )77 78276 Ly
IER=~1 RS
Rriftl)y=F 4
Feirdl1 =0, .o"r'%”\r
00 100 I=ITA+lyNRE PP
FOOTZ (T Y =CHRFLYX((T-TAsECI=-TIA) &
SONTTHYE ’
RET UM

ERROR RETURNS
ERROR RETURN FOR POLYNOMIALS 0OF DEGREE LESS THAN L
[ER=2
IR=0
RETURN




ERROR RETURN IF THERE EXISTS NO S~-FRACTION

(]

80 IER=4
IR=IETA
GOTC &0

c ERROR RETURM IN CASE OF INSTAELE QD-ALGORITHM
81 IER=23
6070 56
END

Re info on page 55:
Taken. from page 183
IBM Application Program
System/360 Scientific Subroutine Package
Version III
Programmer's Manual
Program Number 360A-CM-03X
Fifth E4 (1970)
IBM Corp., Technical Publications Dept.
white Plains, NY 10601




